Hardy approximation to L^p functions on subsets of the circle with 1 ≤ p < ∞
نویسنده
چکیده
We consider approximation of L p functions by Hardy functions on subsets of the circle, for 1 p < 1. After some preliminaries on the possibility of such an approximation which are connected to recovery problems of the Carleman type, we prove existence and uniqueness of the solution to a generalized extremal problem involving norm constraints on the complementary subset. problems in Hardy spaces.
منابع مشابه
Hardy approximation to Lp functions on subsets of the circle
We consider approximation of L p functions by Hardy functions on subsets of the circle. We rst derive some properties of traces of Hardy classes on such subsets, and then turn to a generalization of classical extremal problems involving norm constraints on the complementary subset. Approximation dans l'espace de Hardy de fonctions L p sur un sous{ensemble du cercle R esum e : Nous etudions l'ap...
متن کاملHardy Approximation to L 1 Functions on Subsets of the Circle
We consider approximation of L 1 functions by H 1 functions on proper subsets of the circle. We derive some properties of traces of Hardy classes on such subsets, and then turn to a generalization of classical extremal problems involving norm constraints on the complementary subset.
متن کاملComonotone Polynomial Approximation in L_p[-1, 1], 0 < p ≤ ∞
Let a function f 2 L p ?1; 1], 0 < p 1 have 1 r < 1 changes of monotonicity. For all suuciently large n, we construct algebraic polynomials p n of degree n which are comonotone with f, and such that kf ? p n k Lp?1; 1] C(r)! ' 2 (f; n ?1) p , where ! ' 2 (f; n ?1) p denotes the Ditzian-Totik second modulus of smoothness in L p metric.
متن کاملApproximation by Rational Functions in
The denseness of rational functions with prescribed poles in the Hardy space and disk algebra is considered. Notations. C complex plane D unit disk fz : jzj < 1g Tunit circle fz : jzj = 1g H p Hardy space of analytic functions on D kfk 1 := supfjf(z)j : z 2 D g, the H 1 norm A(D) disk algebra of functions analytic on D and continuous on D P n set of polynomials of degree at most n
متن کاملThe best n-dimensional linear approximation of the Hardy operator and the Sobolev Classes on unit circle and on line
Let I = [a, b] with −∞ < a < b < ∞ and 1 < p < ∞. Let
متن کامل